Radiobiological evaluation of the influence of dwell time modulation restriction in HIPO optimized HDR prostate brachytherapy implants
نویسندگان
چکیده
PURPOSE One of the issues that a planner is often facing in HDR brachytherapy is the selective existence of high dose volumes around some few dominating dwell positions. If there is no information available about its necessity (e.g. location of a GTV), then it is reasonable to investigate whether this can be avoided. This effect can be eliminated by limiting the free modulation of the dwell times. HIPO, an inverse treatment plan optimization algorithm, offers this option. In treatment plan optimization there are various methods that try to regularize the variation of dose non-uniformity using purely dosimetric measures. However, although these methods can help in finding a good dose distribution they do not provide any information regarding the expected treatment outcome as described by radiobiology based indices. MATERIAL AND METHODS The quality of 12 clinical HDR brachytherapy implants for prostate utilizing HIPO and modulation restriction (MR) has been compared to alternative plans with HIPO and free modulation (without MR). All common dose-volume indices for the prostate and the organs at risk have been considered together with radiobiological measures. The clinical effectiveness of the different dose distributions was investigated by calculating the response probabilities of the tumors and organs-at-risk (OARs) involved in these prostate cancer cases. The radiobiological models used are the Poisson and the relative seriality models. Furthermore, the complication-free tumor control probability, P+ and the biologically effective uniform dose ([Formula: see text]) were used for treatment plan evaluation and comparison. RESULTS Our results demonstrate that HIPO with a modulation restriction value of 0.1-0.2 delivers high quality plans which are practically equivalent to those achieved with free modulation regarding the clinically used dosimetric indices. In the comparison, many of the dosimetric and radiobiological indices showed significantly different results. The modulation restricted clinical plans demonstrated a lower total dwell time by a mean of 1.4% that was proved to be statistically significant (p = 0.002). The HIPO with MR treatment plans produced a higher P+ by 0.5%, which stemmed from a better sparing of the OARs by 1.0%. CONCLUSIONS Both the dosimetric and radiobiological comparison shows that the modulation restricted optimization gives on average similar results with the optimization without modulation restriction in the examined clinical cases. Concluding, based on our results, it appears that the applied dwell time regularization technique is expected to introduce a minor improvement in the effectiveness of the optimized HDR dose distributions.
منابع مشابه
Evaluation of hybrid inverse planning and optimization (HIPO) algorithm for optimization in real‐time, high‐dose‐rate (HDR) brachytherapy for prostate
The purpose of this study is to investigate the effectiveness of the HIPO planning and optimization algorithm for real-time prostate HDR brachytherapy. This study consists of 20 patients who underwent ultrasound-based real-time HDR brachytherapy of the prostate using the treatment planning system called Oncentra Prostate (SWIFT version 3.0). The treatment plans for all patients were optimized u...
متن کاملIndependent assessment of source transit time for the BEBIG SagiNova® high dose rate brachytherapy afterloader
Introduction: The dwell time and transit time components contribute to the overall delivered dose to patients in high dose rate (HDR) brachytherapy treatments. The transit time results from source entry and exit as well as source movements between dwell positions. It depends on various parameters such as the source speed profile, source indexer distance to dwell position, and ...
متن کاملComparison of IPSA and HIPO inverse planning optimization algorithms for prostate HDR brachytherapy
Publications have reported the benefits of using high-dose-rate brachytherapy (HDRB) for the treatment of prostate cancer, since it provides similar biochemical control as other treatments while showing lowest long-term complications to the organs at risk (OAR). With the inclusion of anatomy-based inverse planning opti- mizers, HDRB has the advantage of potentially allowing dose escalation. Amo...
متن کاملLow-dose-rate or high-dose-rate brachytherapy in treatment of prostate cancer – between options
PURPOSE Permanent low-dose-rate (LDR-BT) and temporary high-dose-rate (HDR-BT) brachytherapy are competitive techniques for clinically localized prostate radiotherapy. Although a randomized trial will likely never to be conducted comparing these two forms of brachytherapy, a comparative analysis proves useful in understanding some of their intrinsic differences, several of which could be exploi...
متن کاملOptimization of HDR brachytherapy dose distributions using linear programming with penalty costs.
Prostate cancer is increasingly treated with high-dose-rate (HDR) brachytherapy, a type of radiotherapy in which a radioactive source is guided through catheters temporarily implanted in the prostate. Clinicians must set dwell times for the source inside the catheters so the resulting dose distribution minimizes deviation from dose prescriptions that conform to patient-specific anatomy. The pri...
متن کامل